Footing Design of Shear Wall Per ACI 318-14

Footing Design of Shear Wall Per ACI 318-14


It is known that for this criterion a suitable foundation system for a given superstructure can be conceived only if the mechanisms by which earthquake actions are disposed of are clearly defined. In most structures, inelastic deformations during large earthquakes are expected. Consequently for these structures provisions are to be made for energy dissipation, usually by flexural yielding. It is vital that energy dissipation is assigned by the designer to areas within the superstructure or within the foundation structure in such a manner that the expected ductility demands will remain within recognized capabilities of the selected components. It is particularly important to ensure that any damage that might result in the foundation structure does not lead to a reduction of strength that might affect gravity load carrying capacity.

After defining design criteria in general for foundations of earthquake resisting reinforced concrete structures, principles are set out which govern the choice of suitable foundation systems for various types of shear wall structures. The choice of foundation systems depends on whether the seismic response of the superstructure during the largest expected earthquake is to be elastic or inelastic. For inelastically responding superstructures, preferably the foundation system should be designed to remain elastic.

Related Materials:


error: Content is protected !!